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Current industry standard CFD tools 
have limited capabilities
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Technology is decades old and
designed for solving steady flow

problems (using RANS approach)
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Need to expand the ‘industrial CFD 
envelope’
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[1] Murray Cross, Airbus, Technology Product Leader - Future Simulations (2012)
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• “reliable use of CFD has remained confined to 
a small but important region of the operating 
design space due to the inability of current 
methods to reliably predict turbulent separated 
flows” [2]

[2] J. Slotnick et al. Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, NASA Langley 
Research Center Report, 2013
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• Objective of our research is to advance 
industrial CFD capabilities from their 
current ‘RANS plateau’
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• Plan to achieve this by leveraging benefits of 
(and synergies between) high-order Flux 
Reconstruction (FR) methods for 
unstructured grids and massively-parallel
modern hardware platforms
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Flux Reconstruction
+

Modern Hardware
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• Flux Reconstruction (FR) approach to 
high-order methods was first 
proposed by Huynh in 2007 [3]

• High-order accurate in space

• Works on unstructured grids

[3] H. T. Huynh.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin 
Methods.  AIAA Paper 2007-4079. 2007



Algorithms
Motivation | Algorithms | Hardware | PyFR | Results | Performance | Visualisation | Translation

• So ...

High Accuracy + Complex Geometry
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• Consider 1D scalar conservation law

• Divide 1D domain into elements
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• Consider 1D scalar conservation law

• Represent solution by order k piecewise discontinuous
polynomials in each element
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• Consider 1D scalar conservation law

• Represent flux by order k+1 piecewise continuous
polynomials within each element
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• Consider 1D scalar conservation law

• Represent flux by order k+1 piecewise continuous 
polynomials within each element
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• Represent order k solution within 
standard element using a nodal basis
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û�
1

û�
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• Evaluate solution at element boundaries
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• Calculate common interface fluxes
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• Define order k+1 ‘correction function’

1

gL(�1) = 1, gL(1) = 0,
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• Scale this correction function ...
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• ... and add it to the discontinuous flux
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• Repeat from the right ...

1

gR(�1) = 0, gR(1) = 1, gL(x̂) = gR(�x̂)
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• Evaluate divergence of the continuous 
flux at the solution points
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• Nature of FR scheme depends on location of solution 
points, interface flux, correction function

• Can recover a wide range of schemes via judicious 
choice of correction function [4]

• A multi-parameter family of provably stable FR 
schemes have previously been identified [5][6]

[4] H. T. Huynh.  A flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin 
Methods.  AIAA Paper 2007-4079. 2007
[5] P. E. Vincent, P. Castonguay,  A. Jameson.  A New Class of High-Order Energy Stable Flux Reconstruction 
Schemes.  Journal of Scientific Computing. 2011
[6] P. E. Vincent,  et al.  An Extended Range of Stable-Symmetric-Conservative Flux Reconstruction Correction 
Functions. Computer Methods in Applied Mechanics and Engineering. 2015
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• FLOPS increasing faster than memory bandwidth [7]

[7] F. D. Witherden et al. PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on 
Streaming Architectures using the Flux Reconstruction Approach.  Computer Physics Communications. 2014. 
Data courtesy of Jan Treibig. 
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• Also FLOPS come in parallel …
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• And, different programming languages for 
different devices …



Hardware
Motivation | Algorithms | Hardware | PyFR | Results | Performance | Visualisation | Translation

• So a challenging environment ...
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• But significant FLOPS now available if they can be 
harnessed …

2.91TFLOPS
(Double Precision)
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Flux Reconstruction
+

Modern Hardware
PyFR
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Governing Equations
Compressible Euler

Compressible Navier Stokes

Spatial Discretisation
Arbitrary order FR on mixed 

unstructured grids (tris, quads, hexes, 
tets, prisms, pyraminds)

Temporal Discretisation Range of explicit Runge-Kutta schemes

Platforms

CPU clusters (C-OpenMP-MPI)
Nvidia GPU clusters (CUDA-MPI)
AMD GPU clusters (OpenCL-MPI)

Xeon Phi Clusters (PyMIC-MPI)

Precision Single
Double

Input Gmsh, CGNS

Output Paraview

• Features (v1.4.0)
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• Python Outer Layer (Hardware Independent)
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• Need to generate the Hardware Specific Kernels
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• Two types of kernel are required …

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann 
solvers etc.
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• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer
(Hardware Independent)

• For matrix multiply kernels it is pretty easy …

Matrix Multiply 
Kernels

• Data 
interpolation/
extrapolation 
etc.

Use DGEMM from 
vendor supplied 

BLAS

Point-Wise 
Nonlinear Kernels

• Flux functions, 
Riemann 
solvers etc.
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templates through 
Mako derived 

templating engine

• Harder for point-wise nonlinear kernels …
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Raspberry Pi
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Macbook Pro
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Heterogeneous 
Workstation
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Wilkes (UK)
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Piz Daint 
(Switzerland)
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Titan (USA)
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• ~8.0k lines of code
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• Open source ‘3 Clause New Style BSD License’
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• Website: www.pyfr.org

• Twitter: @PyFR_Solver

• Paper: Computer Physics Communications [8]

[8] F. D. Witherden et al. PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on 
Streaming Architectures using the Flux Reconstruction Approach. Computer Physics Communications. 2014
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• 3D Taylor-Green vortex breakdown

• Compare with spectral DNS results of 
van Rees et al. [9]

[9] W. M. van Rees, A. Leonard, D.I. Pullin, and P. Koumoutsakos.  A Comparison of Vortex and Pseudo-
Spectral Methods for the Simulation of Periodic Vortical Flows at High Reynolds Numbers. Journal of 
Computational Physics, 2011
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• A movie …
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• Flow over a cavity

• Re ~ 30,000

• Ma ~ 0.5-0.82
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• A movie …
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• Flow over a NACA 0021 at 60 degree AoA

• Re = 270,000

• Ma = 0.1

• Compare with Swalwell and DESider [11][12]

[11] K. Swalwell. The Effect of Turbulence on Stall of Horizontal Axis Wind Turbines. PhD Thesis. 2005.
[12] W. Haase, M. Braza,  A. Revell. DESider A European Effort on Hybrid RANS-LES Modelling. 2009. 
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• A movie …
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[13] K. Swalwell. The Effect of Turbulence on Stall of Horizontal Axis Wind Turbines. PhD Thesis. 2005.
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[15] W. Haase et al. DESider A European Effort on Hybrid RANS-LES Modelling. 2009. 
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• Landing gear
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• BANC workshop PDCC-NLG test case (courtesy of 
Mehdi Khorrami at NASA Langley)
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• Quadratically curved unstructured tetrahedral mesh 
courtesy of Steve Karman at Pointwise)
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• Preliminary second-order accurate flow solution 
obtained using PyFR
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• Single-node on prism/tetrahedral mesh [17]

[17] F. D. Witherden et al. Heterogeneous Computing on Mixed Unstructured Grids with PyFR. Computers and 
Fluids. 2015.
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• Performance on heterogeneous systems
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[17] F. D. Witherden et al. Heterogeneous Computing on Mixed Unstructured Grids with PyFR. Computers and 
Fluids. 2015.
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• Full-scale T106D LPT cascade test case



Performance
Motivation | Algorithms | Hardware | PyFR | Results | Performance | Visualisation | Translation

• Weak scaling on Piz Daint (p = 4)
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• Strong scaling on Piz Daint (p = 4)
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• Peak sustained performance run (p = 5)

 18,000 GPUs
195 billion DOFs
10.6 DP-PFLOP/s

45% peak
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[18] P. Stadtmüller et al. Experimental and Numerical Investigation of Wake-Induced Transition on a Highly 
Loaded LP Turbine at Low Reynolds Numbers. ASME TurboExpo. 2000.

• Physics run (p = 4)
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• Interactive visualisation/processing of large datasets is a 
significant challenge!
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Remote Cluster



Visualisation
Motivation | Algorithms | Hardware | PyFR | Results | Performance | Visualisation | Translation

Remote Cluster Local Workstation
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Network

Solution in Remote GPU Memory
Copy to Remote CPU Memory
IO to Remote Magnetic Disk

IO from Remote Magnetic Disk

Remote Cluster Local Workstation

Render in Local GPU Memory
Analyse in Local CPU Memory
IO from Local Magnetic Disk
IO to Local Magnetic Disk
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Network

Remote Cluster Local Workstation
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Network

Titan at ORNL SC15 Show Floor
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• Fun with Europe’s largest vis-wall!
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• Emerald (CFI - UK)

• Wilkes (Cambridge University - UK)

• Piz Daint (CSCS - Switzerland)
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